cover of book

Geometry, Rigidity, and Group Actions
edited by Benson Farb and David Fisher
by Robert J Zimmer
University of Chicago Press, 2011
Cloth: 978-0-226-23788-6 | eISBN: 978-0-226-23790-9 | Paper: 978-0-226-23789-3
Library of Congress Classification QA613.G465 2011
Dewey Decimal Classification 516.11


The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.

The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.

See other books on: Fisher, David | Geometry | Group Actions | Manifolds (Mathematics) | Mathematics
See other titles from University of Chicago Press
Nearby on shelf for Mathematics / Geometry. Trigonometry. Topology: