University of Chicago Press, 1971 Paper: 978-0-226-42453-8 Library of Congress Classification QA251.K318 Dewey Decimal Classification 512.55

ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE

ABOUT THIS BOOK

This volume presents lecture notes based on the author's courses on Lie algebras and the solution of Hilbert's fifth problem. In chapter 1, "Lie Algebras," the structure theory of semi-simple Lie algebras in characteristic zero is presented, following the ideas of Killing and Cartan. Chapter 2, "The Structure of Locally Compact Groups," deals with the solution of Hilbert's fifth problem given by Gleason, Montgomery, and Zipplin in 1952.

AUTHOR BIOGRAPHY

Irving Kaplansky is Director Emeritus of the Mathematical Sciences Research Institute and George Herbert Mead Distinguished Professor Emeritus in the Department of Mathematics at the University of Chicago.

TABLE OF CONTENTS

PREFACE
Chapter I. LIE ALGEBRAS
1. Definitions and examples
2. Solvable and nilpotent algebras
3. Semi-simple algebras
4. Cartan subalgebras
5. Transition to a geometric problem
(characteristic 0)
6. The geometric classification
7. Transition to a geometric problem
(characteristic p)
8. Transition to a geometric problem
(characteristic p), continued
Chapter II. THE STRUCTURE OF LOCALLY COMPACT GROUPS
1. NSS groups
2. Existence of one-parameter subgroups
3. Differentiable functions
4. Functions constructed from a single Q
5. Functions constructed from a sequence of Q's
6. Proof that i/n. is bounded
7. Existence of proper differentiable functions
8. The vector space of one-parameter subgroups
9. Proof that K is a neighborhood of 1
10. Approximation by NSS groups
11. Further developments
BIBLIOGRAPHY
INDEX

REQUEST ACCESSIBLE FILE

If you are a student who has a disability that prevents you
from using this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.

Please have the disability coordinator at your school fill out this form.

University of Chicago Press, 1971 Paper: 978-0-226-42453-8

This volume presents lecture notes based on the author's courses on Lie algebras and the solution of Hilbert's fifth problem. In chapter 1, "Lie Algebras," the structure theory of semi-simple Lie algebras in characteristic zero is presented, following the ideas of Killing and Cartan. Chapter 2, "The Structure of Locally Compact Groups," deals with the solution of Hilbert's fifth problem given by Gleason, Montgomery, and Zipplin in 1952.

AUTHOR BIOGRAPHY

Irving Kaplansky is Director Emeritus of the Mathematical Sciences Research Institute and George Herbert Mead Distinguished Professor Emeritus in the Department of Mathematics at the University of Chicago.

TABLE OF CONTENTS

PREFACE
Chapter I. LIE ALGEBRAS
1. Definitions and examples
2. Solvable and nilpotent algebras
3. Semi-simple algebras
4. Cartan subalgebras
5. Transition to a geometric problem
(characteristic 0)
6. The geometric classification
7. Transition to a geometric problem
(characteristic p)
8. Transition to a geometric problem
(characteristic p), continued
Chapter II. THE STRUCTURE OF LOCALLY COMPACT GROUPS
1. NSS groups
2. Existence of one-parameter subgroups
3. Differentiable functions
4. Functions constructed from a single Q
5. Functions constructed from a sequence of Q's
6. Proof that i/n. is bounded
7. Existence of proper differentiable functions
8. The vector space of one-parameter subgroups
9. Proof that K is a neighborhood of 1
10. Approximation by NSS groups
11. Further developments
BIBLIOGRAPHY
INDEX

REQUEST ACCESSIBLE FILE

If you are a student who has a disability that prevents you
from using this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.

Please have the disability coordinator at your school fill out this form.

It can take 2-3 weeks for requests to be filled.

ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE