logo for The Institution of Engineering and Technology
Hydrogen from Seawater Splitting
Technology and outlook
Abhijit Ray
The Institution of Engineering and Technology, 2024
Hydrogen is a key vector of decarbonized energy systems. It can be used as long term and seasonal storage for electricity itself, as well as in the automotive sector, for space heating and for the chemical industry.
[more]

front cover of Hydrogen
Hydrogen
The Essential Element
John S. Rigden
Harvard University Press, 2003

Seduced by simplicity, physicists find themselves endlessly fascinated by hydrogen, the simplest of atoms. Hydrogen has shocked, it has surprised, it has embarrassed, it has humbled--and again and again it has guided physicists to the edge of new vistas where the promise of basic understanding and momentous insights beckoned. The allure of hydrogen, crucial to life and critical to scientific discovery, is at the center of this book, which tells a story that begins with the big bang and continues to unfold today.

In this biography of hydrogen, John Rigden shows how this singular atom, the most abundant in the universe, has helped unify our understanding of the material world from the smallest scale, the elementary particles, to the largest, the universe itself. It is a tale of startling discoveries and dazzling practical benefits spanning more than one hundred years--from the first attempt to identify the basic building block of atoms in the mid-nineteenth century to the discovery of the Bose-Einstein condensate only a few years ago. With Rigden as an expert and engaging guide, we see how hydrogen captured the imagination of many great scientists--such as Heisenberg, Pauli, Schrödinger, Dirac, and Rabi--and how their theories and experiments with this simple atom led to such complex technical innovations as magnetic resonance imaging, the maser clock, and global positioning systems. Along the way, we witness the transformation of science from an endeavor of inspired individuals to a monumental enterprise often requiring the cooperation of hundreds of scientists around the world.

Still, any biography of hydrogen has to end with a question: What new surprises await us?

[more]

front cover of The Hype About Hydrogen
The Hype About Hydrogen
Fact and Fiction in the Race to Save the Climate
Joseph J. Romm
Island Press, 2005
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two.

Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050.

The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.

[more]

front cover of Methane and Hydrogen for Energy Storage
Methane and Hydrogen for Energy Storage
Rupp Carriveau
The Institution of Engineering and Technology, 2016
Commercial energy storage has moved from the margins to the mainstream as it fosters flexibility in our smarter, increasingly integrated energy systems. Natural gas has been identified by many as the fuel to take us to the no-carbon horizon; where a hydrogen economy waits on development. These two actors are already connected in precursor applications as transitional solutions for hydrogen handling and transportation are sought ahead of a fully established hydrogen infrastructure.
[more]

logo for University of Chicago Press
Selected Papers, Volume 2
Radiative Transfer and Negative Ion of Hydrogen
S. Chandrasekhar
University of Chicago Press, 1989
This is the second of six volumes collecting significant papers of the distinguished astrophysicist and Nobel laureate S. Chandrasekhar. His work is notable for its breadth as well as for its brilliance; his practice has been to change his focus from time to time to pursue new areas of research. The result has been a prolific career full of discoveries and insights, some of which are only now being fully appreciated.

Chandrasekhar has selected papers that trace the development of his ideas and that present aspects of his work not fully covered in the books he has periodically published to summarize his research in each area.

Volume 2 covers primarily the period 1940-50 and includes papers on the theory of radiative transfer and on the physics and astrophysics of the negative ion of hydrogen. Of particular note are Chandrasekhar's Gibbs Lecture to the American Mathematical Society in 1946 and his "Personal Account" presented at a conference at Erevan in the U.S.S.R. in 1981. A foreword by T. W. Mullikin, a distinguished scholar in the area of radiative transfer, and an author's note provide a historical context for the papers.
[more]


Send via email Share on Facebook Share on Twitter