University of Chicago Press, 1988 Cloth: 978-0-226-11548-1 | Paper: 978-0-226-11549-8 Library of Congress Classification QA374.C655 1988 Dewey Decimal Classification 515.353

ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE

ABOUT THIS BOOK

Both an original contribution and a lucid introduction to mathematical aspects of fluid mechanics, Navier-Stokes Equations provides a compact and self-contained course on these classical, nonlinear, partial differential equations, which are used to describe and analyze fluid dynamics and the flow of gases.

AUTHOR BIOGRAPHY

Peter Constantin is professor of mathematics at the University of Chicago. Ciprian Foias is Distinguished Professor in Mathematics at Indiana University.

TABLE OF CONTENTS

Introduction
1. Notation and Preliminary Material
2. The Stokes equations. Existence and Uniqueness of Weak Solutions
3. Regularity of Solutions of the Stokes Equations
4. The Stokes Operator
5. The Navier-Stokes Equations
6. Inequalities for the Nonlinear Term
7. Stationary solutions to the Navier-Stokes Equations
8. Weak Solutions of the Navier-Stokes Equation
9. Strong Solutions
10. Further Results Concerning Weak and Strong Solutions
11. Vanishing Viscosity Limits
12. Analyticity and Backward Uniqueness
13. Exponential Decay of Volume Elements
14. Global Lyapunov Exponents. Hausdorff and Fractal Dimension of the Universal Attractor
15. Inertial Manifolds
Bibliography
Index

REQUEST ACCESSIBLE FILE

If you are a student who has a disability that prevents you
from using this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.

Please have the disability coordinator at your school fill out this form.

University of Chicago Press, 1988 Cloth: 978-0-226-11548-1 Paper: 978-0-226-11549-8

Both an original contribution and a lucid introduction to mathematical aspects of fluid mechanics, Navier-Stokes Equations provides a compact and self-contained course on these classical, nonlinear, partial differential equations, which are used to describe and analyze fluid dynamics and the flow of gases.

AUTHOR BIOGRAPHY

Peter Constantin is professor of mathematics at the University of Chicago. Ciprian Foias is Distinguished Professor in Mathematics at Indiana University.

TABLE OF CONTENTS

Introduction
1. Notation and Preliminary Material
2. The Stokes equations. Existence and Uniqueness of Weak Solutions
3. Regularity of Solutions of the Stokes Equations
4. The Stokes Operator
5. The Navier-Stokes Equations
6. Inequalities for the Nonlinear Term
7. Stationary solutions to the Navier-Stokes Equations
8. Weak Solutions of the Navier-Stokes Equation
9. Strong Solutions
10. Further Results Concerning Weak and Strong Solutions
11. Vanishing Viscosity Limits
12. Analyticity and Backward Uniqueness
13. Exponential Decay of Volume Elements
14. Global Lyapunov Exponents. Hausdorff and Fractal Dimension of the Universal Attractor
15. Inertial Manifolds
Bibliography
Index

REQUEST ACCESSIBLE FILE

If you are a student who has a disability that prevents you
from using this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.

Please have the disability coordinator at your school fill out this form.

It can take 2-3 weeks for requests to be filled.

ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE