front cover of Before Big Science
Before Big Science
The Pursuit of Modern Chemistry and Physics, 1800-1940
Mary Jo Nye
Harvard University Press, 1996

Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science.

Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mechanics, relativity theory, and nuclear science.

[more]

front cover of Benjamin Franklin's Science
Benjamin Franklin's Science
I. Bernard Cohen
Harvard University Press, 1990

Benjamin Franklin is well known to most of us, yet his fundamental and wide-ranging contributions to science are still not adequately understood. Until now he has usually been incorrectly regarded as a practical inventor and tinkerer rather than a scientific thinker. He was elected to membership in the elite Royal Society because his experiments and original theory of electricity had made a science of that new subject. His popular fame came from his two lightning experiments—the sentry-box experiment and the later and more famous experiment of the kite—which confirmed his theoretical speculations about the identity of electricity and provided a basis for the practical invention of the lightning rod. Franklin advanced the eighteenth-century understanding of all phenomena of electricity and provided a model for experimental science in general.

I. Bernard Cohen, an eminent historian of science and the principal elucidator of Franklin’s scientific work, examines his activities in fields ranging from heat to astronomy. He provides masterful accounts of the theoretical background of Franklin’s science (especially his study of Newton), the experiments he performed, and their influence throughout Europe as well as the United States. Cohen emphasizes that Franklin’s political and diplomatic career cannot be understood apart from his scientific activities, which established his reputation and brought him into contact with leaders of British and European society. A supplement by Samuel J. Edgerton considers Franklin’s attempts to improve the design of heating stoves, another practical application that arose from theoretical interests.

This volume will be valuable to all readers wanting to learn more about Franklin and to gain a deeper appreciation of the development of science in America.

[more]

front cover of The Best of All Possible Worlds
The Best of All Possible Worlds
Mathematics and Destiny
Ivar Ekeland
University of Chicago Press, 2006

Optimists believe this is the best of all possible worlds. And pessimists fear that might really be the case. But what is the best of all possible worlds? How do we define it? Is it the world that operates the most efficiently? Or the one in which most people are comfortable and content? Questions such as these have preoccupied philosophers and theologians for ages, but there was a time, during the seventeenth and eighteenth centuries, when scientists and mathematicians felt they could provide the answer.

This book is their story. Ivar Ekeland here takes the reader on a journey through scientific attempts to envision the best of all possible worlds. He begins with the French physicist Maupertuis, whose least action principle asserted that everything in nature occurs in the way that requires the least possible action. This idea, Ekeland shows, was a pivotal breakthrough in mathematics, because it was the first expression of the concept of optimization, or the creation of systems that are the most efficient or functional. Although the least action principle was later elaborated on and overshadowed by the theories of Leonhard Euler and Gottfried Leibniz, the concept of optimization that emerged from it is an important one that touches virtually every scientific discipline today. 

Tracing the profound impact of optimization and the unexpected ways in which it has influenced the study of mathematics, biology, economics, and even politics, Ekeland reveals throughout how the idea of optimization has driven some of our greatest intellectual breakthroughs. The result is a dazzling display of erudition—one that will be essential reading for popular-science buffs and historians of science alike.

[more]

front cover of Beyond Weird
Beyond Weird
Why Everything You Thought You Knew about Quantum Physics Is Different
Philip Ball
University of Chicago Press, 2018
“Anyone who is not shocked by quantum theory has not understood it.”

Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible.

An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it.  Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.
[more]

logo for University of Chicago Press
Black Holes and Relativistic Stars
Edited by Robert M. Wald
University of Chicago Press, 1998
A comprehensive summary of progress made during the past decade on the theory of black holes and relativistic stars, this collection includes discussion of structure and oscillations of relativistic stars, the use of gravitational radiation detectors, observational evidence for black holes, cosmic censorship, numerical work related to black hole collisions, the internal structure of black holes, black hole thermodynamics, information loss and other issues related to the quantum properties of black holes, and recent developments in the theory of black holes in the context of string theory.

Volume contributors: Valeria Ferrari, John L. Friedman, James B. Hartle, Stephen W. Hawking, Gary T. Horowitz, Werner Israel, Roger Penrose, Martin J. Rees, Rafael D. Sorkin, Saul A. Teukolsky, Kip S. Thorne, and Robert M. Wald.
[more]

front cover of Black-Body Theory and the Quantum Discontinuity, 1894-1912
Black-Body Theory and the Quantum Discontinuity, 1894-1912
Thomas S. Kuhn
University of Chicago Press, 1987
"A masterly assessment of the way the idea of quanta of radiation became part of 20th-century physics. . . . The book not only deals with a topic of importance and interest to all scientists, but is also a polished literary work, described (accurately) by one of its original reviewers as a scientific detective story."—John Gribbin, New Scientist

"Every scientist should have this book."—Paul Davies, New Scientist
[more]

front cover of Blackett
Blackett
Physics, War, and Politics in the Twentieth Century
Mary Jo Nye
Harvard University Press, 2004

This is a lively and compact biography of P. M. S. Blackett, one of the most brilliant and controversial physicists of the twentieth century. Nobel laureate, leader of operational research during the Second World War, scientific advisor to the British government, President of the Royal Society, member of the House of Lords, Blackett was also denounced as a Stalinist apologist for opposing American and British development of atomic weapons, subjected to FBI surveillance, and named as a fellow traveler on George Orwell's infamous list.

His service as a British Royal Navy officer in the First World War prepared Blackett to take a scientific advisory role on military matters in the mid-1930s. An international leader in the experimental techniques of the cloud chamber, he was a pioneer in the application of magnetic evidence for the geophysical theory of continental drift. But his strong political stands made him a polarizing influence, and the decisions he made capture the complexity of living a prominent twentieth-century scientific life.

[more]

logo for Harvard University Press
A Brief History of the Harvard University Cyclotrons
Richard Wilson
Harvard University Press, 2004
In 1937, Harvard University built its first cyclotron, which was subsequently requisitioned by the U.S. Army and taken to Los Alamos in 1943. The second cyclotron, one of the world's longest-running accelerators, was finished in 1949 and operated until 2002. In its first 20 years, the cyclotron's primary use was for nuclear physics, particularly for understanding the interaction between two nucleons. During the next 30 years, the emphasis switched to treating patients with proton radiotherapy. A total of 9,115 patients were treated by this method and the treatment has been copied all over the world. This book describes the work of the Harvard cyclotron during its 50 years of operation and includes references to about 500 publications and 40 student theses from the work.
[more]


Send via email Share on Facebook Share on Twitter